

# Public Procurement as a Demand Side Instrument in Innovation Policy – Some Experience from Germany

**Birgit Aschhoff** 

Centre for European Economic Research (ZEW), Mannheim, Germany

2013 ERAC Mutual Learning Seminar on Research and Innovation Policies

Brussels, 21 March 2013

1



## Content

- (1) Overview of main demand side instruments
- (2) PPI-related activities in Germany
- (3) Some empirical evidence for Germany
- (4) Final remarks



## Main Demand Side Instruments

- Regulation, e.g. emission limits, health
- Stimulation of private demand for innovative products, e.g. buyer's premium, scrappage premium ("Abwrackprämie")
- Public procurement of innovation (PPI)

Public organization places an order for a not-yet-existing product or system; innovation is a pre-condition for delivery (Edquist et al., 2012)
 purchase of standard and already existing products

Principal reasons for PPI:

satisfying / improving the supply of public services and/or solving societal problems, e.g. security, sustainability or energy efficiency.



## **PPI-Activities in German Policy**

- 2006: High-tech Strategy: stress potential of PP for innovation
- 2007: joint initiative of six federal ministries: "Intensified innovation-oriented PP"
- 2009: modification of the German law against restraint of competition (GWB): award criteria have been extended by innovative aspects
- 2010: High-tech Strategy 2020: stress potential of PP for innovation further, <u>embedded in mission-oriented policies to solve grand challenges</u>, e.g. "public procurement is to focus more strongly on innovations in security technology" (BMBF, 2010: p.17).
- 2011: brochures to raise awareness of PP by Federal Ministry of Economics and Technology (BMWI) and encouragement of public procurers to participate in the European calls for proposals for cross-border PCP and PPI projects
- 2012: Innovation concept of BMWI: They will provide incentives for PPI.
- 2013: opening of competence centre for innovation-oriented PP
- Since 2006: annual prize "innovation creates a lead"



## **Some Empirical Evidence for Germany**

The seller side (results from the German Innovation Survey)

- (1) Measurement of PPI
- (2) Significance of PPI
- (3) Impact of PPI on firms' performance

The buyer side

(1) Which factors hinder demand for innovations in PP?



## **Sources of Innovation**

- **Mansfield** (1991): *innovations that could not have been developed in the absence of recent academic research*
- Extending to other potential external sources that were indispensable for developing and introducing product or process innovation:
  - customers/demand
  - suppliers
  - competitors
  - regulation
  - public science
- Firms had to assess the significance of each source for their product and process innovations separately
- For each innovation source (except regulation), data on sector and location of sources was collected (textfield)
- → 2-page question, included in 1999 and 2003 surveys



## **Question in Survey**

### 9. External Sources for Innovation

External innovation sources are defined as those innovations initiators whose impulses were indispensable in the development of a new product, service or process.

#### 9.1 Customers as innovation source

Were any of the new or significantly improved products/services or processes introduced during 2000-2002 by your enterprise innovations being introduced because specific customers had expressed a wish for them or because they were explicitly demanded by buyers (e.g. identified during market research)?

| No                               |     | Please continue with Question 9.2                                                        |        |         |         |       |  |
|----------------------------------|-----|------------------------------------------------------------------------------------------|--------|---------|---------|-------|--|
| Yes, product/service innovations | □ ▶ | Estimated share of the 2002 total turnover of these innovation projects (incl. exports): |        |         |         |       |  |
|                                  |     | ≤ 5%□                                                                                    | 6-15%□ | 16-30%ロ | 31-50%□ | >50%□ |  |
| Yes, process innovation          |     |                                                                                          |        |         |         |       |  |

From which <u>industry sectors</u> (e.g. basic chemistry, machine tool manufacture, retail, banking, software industry, hospitals, public administration, private households) did these <u>customers</u> or the <u>specific</u> demand originate?  $\rightarrow$  *Please list in order of significance.* 

In which countries were these customers or this explicit demand located? (e. g. Germany, USA, Japan)

• predominantly in

also in



## **Measurement of PPI**

- PPI: introduction and sale of innovative product for which the development has been **explicitly demanded** by a public authority
- Simple purchase of innovative products by public authorities is **not** PPI
- Public authorities also include **public services**

#### ZERW Zentrum für Europäische Witschaftsforschung GmbH

## **Data Analysis**

- Sectors were assigned to **NACE** (rev. 1.1) **3-digit**
- For each innovation source, sales with new products (for product innovation) and cost savings (for process innovation) triggered by that source were calculated using weights:

$$IO_k = \sum_i (S_i \alpha_{ik} w_i)$$
 IO in  
S to

- IO innovation output
- S total sales / total costs
- α sales share of new products / cost
  savings share triggered by source k
  w weight of firm i in total firm population
- A sector's contribution to innovation output was calculated by weighting IO<sub>k</sub> by the (approximate) share of sector j in all innovation impulses received from source k
- **Public administration** and **public services** identified through corresponding NACE (rev. 1.1) sectors (75, 80, 85, 40, 41, 60, 70, 73, 90)



## Significance of Innovation Sources (1998 / 2002 average)



\* include in-house R&D and other creative work and other external sources



## Significance of Public Procurement as Innovation Source (1998 / 2002)

|                       | Share in al<br>impulses by c | l innovation<br>customers (%) | Share in total<br>innovation output (%) |                       |  |  |  |  |  |
|-----------------------|------------------------------|-------------------------------|-----------------------------------------|-----------------------|--|--|--|--|--|
| NACE<br>rev 1.1       | product<br>innovation        | process<br>innovation         | product<br>innovation                   | process<br>innovation |  |  |  |  |  |
| Public customers from |                              |                               |                                         |                       |  |  |  |  |  |
| 75/80                 | 2.8                          | 0.5                           | 0.5                                     | 0.1                   |  |  |  |  |  |
| 85                    | 1.2                          | 0.1                           | 0.2                                     | 0.0                   |  |  |  |  |  |
| 73*                   | 0.2                          | 0.7                           | 0.0                                     | 0.1                   |  |  |  |  |  |
| 90*                   | 0.1                          | 0.0                           | 0.0                                     | 0.0                   |  |  |  |  |  |
| 60*                   | 2.4                          | 0.3                           | 0.4                                     | 0.1                   |  |  |  |  |  |
| 70*                   | 0.4                          | 0.2                           | 0.1                                     | 0.0                   |  |  |  |  |  |
| 40/41*                | 0.4                          | 0.4                           | 0.1                                     | 0.1                   |  |  |  |  |  |
| Total                 | 7.5                          | 2.2                           | 1.2                                     | 0.4                   |  |  |  |  |  |
| Regulation            |                              |                               | 3.5                                     | 15.4                  |  |  |  |  |  |
| Public science        | 9                            |                               | 1.5                                     | 10.8                  |  |  |  |  |  |

\* share of innovation impulses from public organisations estimated

Source: Mannheim Innovation Panel (German CIS), surveys 1999 and 2003



## **Innovativeness of Demand** (1998 / 2002)



12 Source: Mannheim Innovation Panel (German CIS), surveys 1999 and 2003 – Federal Statistical Office of Germany: Input-Output-Tables



## **Impact of PPI on Innovation Performance**

Aschhoff & Sofka (2009)

- PPI contributes to higher sales with new products
- no such effect found for defence demand, however
- SMEs, services and firms from eastern Germany profit most from PPI

Beise & Rammer (2006)

\_\_\_\_\_

 PPI tend to limit export activities of firms, particularly for service firms that use PPI from the health sector

Some new evidence probably soon... Question on PP in CIS 2012



## **The Buyer Side**

## Which factors hinder demand for innovations in PP?

- Procurement agents / authorities (BMWi, 2010; Falck/Wiederhold, 2013):
- general concerns regarding innovations
- avoidance of risk associated with introduction of new technologies
- lack of knowledge regarding new products / technologies, life cycle cost analysis, (new) public procurement rules
- increase of work
- tenders often to specific to allow innovations
- Complicated conditions in Germany due to high fragmentation of PP (30,000 contracting entities)
- $\rightarrow$  Activities sufficient to stimulate PPI?

Training? Incentives? Responsibility? Project management? Coordination?



## **Final Remarks**

- Shift towards PPI on all policy levels (EU, national, regional)
- Mainly case studies; quantitative research on PP is still limited though increasing.
- Necessity of collecting *complete* data (after creation of measures) and providing access to these data.
- Need for evaluations of PPI: on firm level, industry level and regarding main objective: improving public services / mitigating grand challenges AND comparison of effects with other policy instruments.

 $\rightarrow$  Which instrument works best for what?



# Thank you for your attention.

aschhoff@zew.de





Aschhoff, B. and W. Sofka (2009), Innovation on Demand – Can Public Procurement Drive Market Success of Innovations?, Research Policy 38, 1235-1247.

Beise, M. and C. Rammer (2006), Local User-Producer Interaction in Innovation and Export Performance of Firms, Small Business Economics 27(2-3), 207-222; based on ZEW Discussion Paper No. 03-51.

BMBF (2010), Ideas. Innovation. Prosperity. High-Tech Strategy 2020 for Germany, Berlin.

BMWi (2010), Impulse für Innovationen im öffentlichen Beschaffungswesen, Berlin.

Edquist, C. and J.M. Zabala-Iturriagagoitiaa (2012), Public Procurement for Innovation as missionoriented innovation policy, Research Policy 41, 1757-1769.

Falck, O. and S. Wiederhold (2013), Nachfrageorientierte Innovationspolitik, Studien zum deutschen Innovationssystem Nr. 12-2013.

Mansfield, E. (1991), Academic research and industrial innovation, Research Policy 20, 1-12.